Effects of intake charge temperature and relative air-fuel ratio on the deterministic characteristics of cyclic combustion dynamics of a HCCI engine

Author:

Singh Ajay1ORCID,Maurya Rakesh Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India

Abstract

Homogenous charge compression ignition (HCCI) combustion can significantly reduce automotive pollution and increase the thermal efficiency of the engine. However, combustion phasing control is a major challenge in HCCI engines due to severe cyclic combustion variations. This study investigates the cyclic combustion dynamics of the HCCI engine using nonlinear dynamic methods such as return maps, recurrence plots (RPs), and recurrence quantitative analysis (RQA). Combustion stability and cyclic variations of HCCI combustion parameters were investigated on a modified four-stroke diesel engine. The experiments were conducted by varying relative air-fuel ratios ([Formula: see text]) and intake air temperatures ([Formula: see text]) at two engine speeds. In-cylinder pressure data of 2000 consecutive engine combustion cycles is logged for each test condition. In this study, deterministic characteristics of combustion phasing (CA50) and crank angle position of maximum cylinder pressure ([Formula: see text]) are investigated and compared by employing nonlinear dynamical methods. Return maps revealed that [Formula: see text] is having distinct and more frequently observed deterministic characteristics in comparison to CA50. Patterns in RPs showed a more persistent and sudden change in the combustion dynamics at higher engine speeds. Recurrence plot-based analysis found the existence of deterministic features in the combustion dynamics irrespective of the operating conditions. It was found using RQA parameters that the deterministic nature becomes stronger with a decrease in [Formula: see text] and any deviation in intermediate values of [Formula: see text]. Additionally, RQA measures advocate that CA50 has more deterministic characteristics at higher engine speed while [Formula: see text] at lower engine speed. Strong coupling and synchronization between [Formula: see text] and CA50 is indicated by cross-recurrence plots and CPR index when engine operated with a comparatively richer mixture.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3