A universally applicable 0D turbulence model based on the physical analysis of fundamental tumble behaviors in spark-ignition engines

Author:

Kim Myoungsoo12ORCID,Song Han Ho1

Affiliation:

1. Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea

2. BK21 FOUR Creative Education and Research Program for World-Leading Mechanical Engineering, Seoul National University, Seoul, Republic of Korea

Abstract

Predicting turbulence in a zero-dimensional (0D) simulation is an undeniably challenging task due to the complexity of in-cylinder charge motion. In that respect, a physics-based understanding of in-cylinder flow phenomena is of vital importance for establishing high-fidelity 0D turbulence models under diverse engine conditions. The proposed 0D model is hence built upon the kinetic energy analyses of tumble, evidenced by three-dimensional computational fluid dynamics. Specifically, the overall 0D turbulence model consists of an intake model, a spinning up model, and a turbulence production model. The major difference between this model and the existing 0D turbulence models is that this model is grounded on a kinetic energy perspective of tumble, as opposed to an angular momentum perspective of tumble. That is, the behaviors of tumble, such as spinning up and vortex breakdown, are interpreted and modeled based on the changes in the kinetic energy of tumble. This enables the proposed model to secure wider applicability at various engine conditions, which were otherwise difficult to achieve. Therefore, the 0D simulation in this study was able to predict turbulent intensities at the conditions, differing in valve strategy, engine geometry, and engine operation, without changing any validation constants. Furthermore, along with the validation points used in this study, better predictions of turbulent intensity were achieved using the proposed model compared to the existing state-of-the-art model.

Funder

Brain Korea 21 FOUR Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3