Evaluation of the combustion-induced noise and vibration using coherence and wavelet coherence estimates in a diesel engine

Author:

Ahmadian Hossein1ORCID,Najafi Gholamhassan1,Ghobadian Barat1,Hassan-Beygi Seyed Reza2,Hoseini Seyed Salar1

Affiliation:

1. Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran

2. Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran

Abstract

The understanding of noise generation and source identification is vital in noise control. This research was conducted to experimentally evaluate combustion-induced noise and vibration using coherence and wavelet coherence estimates. A single-cylinder direct-injection diesel engine was chosen for experimental investigation. The independent variables for conducting experiments were injection timing with five levels of 22, 27, 32 (normal), 37, and 42 crank angles before the top dead center, and also the engine torque load with four levels of 55%, 70%, 85%, and 100% of the rated value. The signals of cylinder pressure, liner acceleration, and radiated sound pressure of the test engine were measured and recorded. Then, coherency and wavelet coherency experiments were carried out between cylinder pressure and liner acceleration, cylinder pressure and sound pressure, and liner acceleration and sound pressure signals in MATLAB software. The results indicated that increasing load would increase wavelet coherency between cylinder pressure and liner acceleration signals at frequencies higher than 1 kHz. The coherent regions between cylinder pressure and sound pressure signals were mainly at frequencies higher than 1 kHz while advancing the fuel injection timing had shifted the coherency toward lower frequencies. In general, with advancing injection timing, the coherent regions between liner acceleration and sound pressure signals have appeared at broader time ranges, especially at frequencies between 100 and 500 Hz. Comparing the results of the wavelet coherency and coherency tests, we concluded that wavelet coherency is a more accurate and descriptive tool in evaluating the combustion-induced noise and vibration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3