Development of common rail lube oil injector for large two-stroke marine diesel engines

Author:

Milanese Marco1ORCID,Iacobazzi Fabrizio1ORCID,Stark Matthias2,de Risi Arturo1

Affiliation:

1. Department of Engineering for Innovation, University of Salento, Lecce, Italy

2. Winterthur Gas & Diesel Ltd, Winterthur, Switzerland

Abstract

The two-stroke crosshead diesel engines, nowadays moving the majority of merchant vessels, have lubrication systems which significantly contribute to their overall emissions, since they work on total loss basis: a relevant fraction of lubricant enters the exhaust duct, increasing total exhaust emissions. This paper demonstrates that a viable solution to reduce lubrication system related emissions can be found in the application of a new common rail type ( CR) lubrication system. Particularly, in the first part of this study, a common rail injector was simulated and numerically optimized by means of AMESim. The main parameters influencing lube oil injected mass were identified, with the purpose to design a highly time responsive injector. Therefore, a CR injector was realized and experimentally characterized by means of a dedicated test cell, defining the lube oil injection map over the entire engine load range. Finally, full scale engine tests allowed to evaluate oil loss at exhaust, proposing, and applying the Sulfur tracing methodology. A comparison with a pulse jet lubrication system demonstrated a relevant reduction in oil loss: 100% engine load testes demonstrated decreases ranging from 56.2% to 63.3%, while once fixed the lube oil feed rate to 0.8 g/kWh a maximum reduction in oil loss equal to 66.7% was reached. These results allow nominating the common rail lubrication system as a feasible solution to significantly reduce oil loss at exhaust of large two-stroke marine diesel engines.

Funder

EU project HERCULES-2 Project Fuel Flexible, Near Zero Emissions, Adaptive Performance Marine Engine

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3