Late post-injection of biofuel blends in an optical diesel engine: Experimental and theoretical discussion on the inevitable wall-wetting effects on oil dilution

Author:

Hulkkonen Tuomo1,Tilli Aki1,Kaario Ossi1,Ranta Olli1,Sarjovaara Teemu2,Vuorinen Ville1,Larmi Martti1,Lehto Kalle2

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Aalto University, Espoo, Finland

2. Neste, Finland

Abstract

In a diesel engine, diesel particulate filter is used to reduce particle matter emissions. Diesel particulate filter requires periodic regenerations under high-temperature conditions in the exhaust pipe in order to oxidize the accumulated soot. A common strategy to produce high exhaust gas temperature is to inject late post-injections after the main injection. However, this practice may dilute the engine oil, causing engine wear. Biofuel addition to petroleum diesel may increase oil dilution even more. This is related to the fuel spray characteristics, the post-injection control and the vaporization process of fuel in engine oil. In this study, spray properties of late post-injection were studied with petroleum diesel and two types of transport biofuel blends containing 30% either fatty acid methyl ester or hydro-treated vegetable oil. Three different late post-injection timings were investigated. Image sequences of the main spray flame as well as the non-combusting late post-injection spray were extracted. In order to verify oil dilution during regeneration cycle and late post-injection, oil samples from six-cylinder test engine were analyzed. According to the present experiments, differences in the spray characteristics are not significant with the tested fuels. However, higher oil dilution rates were observed with fuel blend composed of 30% fatty acid methyl ester. All the studied late post-injection timings were noted to lead to the unwanted cylinder spray/wall interaction and wall-wetting consequently diluting the engine oil. The spray/wall interaction is thoroughly explained by introducing a theoretical/computational framework which characterizes any spray/wall interaction in terms of a phase diagram for any considered operation conditions. The novelty of this study arises from (1) first comparison of fatty acid methyl ester and hydro-treated vegetable oil blends in an optical engine, (2) strong evidence on the phenomena related to post-injection phase in six-cylinder and single-cylinder optical engine configurations and (3) the development of a single-droplet model showing inevitable wall-wetting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3