Evaluation of zero-dimensional stochastic reactor modelling for a Diesel engine application

Author:

Korsunovs Aleksandrs1,Campean Felician1ORCID,Pant Gaurav1,Garcia-Afonso Oscar2,Tunc Efe2

Affiliation:

1. Automotive Research Centre, University of Bradford, Bradford, UK

2. Jaguar Land Rover, Coventry, UK

Abstract

Prediction of engine-out emissions with high fidelity from in-cylinder combustion simulations is still a significant challenge early in the engine development process. This article contributes to this fast evolving body of knowledge by focusing on the evaluation of NO x emission prediction capability of a probability density function–based stochastic reactor engine models for a Diesel engine. The research implements a systematic approach to the study of the stochastic reactor engine model performance, underpinned by a detailed space-filling design of experiments (DoE)-based sensitivity analysis of both external and internal parameters, evaluating their effects on the accuracy in matching physical measurements of both in-cylinder conditions and NO x output. The approach proposed in this article introduces an automatic stochastic reactor engine model calibration methodology across the engine operating envelope, based on a multi-objective optimization approach. This aims to exploit opportunities for internal stochastic reactor engine model parameters tuning to achieve good overall modelling performance as a trade-off between physical in-cylinder measurements accuracy and the output NO x emission predictions error. The results from the case study provide a valuable insight into the effectiveness of the stochastic reactor engine model, showing good capability for NO x emissions prediction and trends, while pointing out the critical sensitivity to the external input parameters and modelling conditions.

Funder

Jaguar Land Rover

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3