Effects of equivalence ratio and CNG addition on engine performance and emissions in a dual sequential ignition engine

Author:

Yontar Ahmet Alper1ORCID,Doğu Yahya2

Affiliation:

1. Department of Automotive Engineering, Faculty of Technology, Tarsus University, Tarsus, Turkey

2. Department of Mechanical Engineering, Faculty of Engineering, Kırıkkale University, Yahşihan/Kırıkkale, Turkey

Abstract

Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in the open literature during last decades, while engine characteristics need to be quantified in exact numbers for each specific fuel and engine. CNG usage in spark-ignition engine offers many advantages such as high specific power outputs, knock resistance, and low CO2 emission. Engine performance and emissions are strong functions of equivalence ratio. This study focuses on determination of the effects of equivalence ratio on engine performance and emissions for a unique commercial engine for three fuels of gasoline, CNG, and gasoline–CNG mixture (90%–10%: G9C1). For this aim, the tests and the three-dimensional in-cylinder combustion computational fluid dynamics analyses were employed in quantification of engine characteristics at wide open throttle position. Equivalence ratios were defined between 0.7 and 1.4. The engine’s maximum torque speed of 2800 r/min was examined. The tested commercial engine is an intelligent dual sequential ignition engine which has unique features such as diagonally positioned two spark-plugs, dual sequential ignition with variable timing and asymmetrical combustion chamber. This gasoline engine was equipped with an independent CNG port-injection system and a specific engine control unit for CNG. In addition, the engine test system has a concomitant dual fuel delivery system that supplies gas fuel into intake airline while liquid gasoline is injected behind the intake valve. Other than testing the engine, the three-dimensional in-cylinder combustion computational fluid dynamics analyses were performed in Star-CD/es-ice software for the three fuels. The CFD model was built by using renormalization group equations, k–ε turbulence model, and G-equation combustion model. Computational fluid dynamics analyses were run for the compression ratio of 10.8:1, equivalence ratio of 1.1, and engine’s maximum torque speed of 2800 r/min. Test results show that brake torque for all fuels increases rapidly from the lean blend to the rich blend. The brake-specific fuel consumption for all fuels decreases from Φ = 0.7 through the stoichiometric region and then slightly increases up to Φ = 1.4. The volumetric efficiencies for three fuels have similar decreasing trend with respect to equivalence ratio. Overall, CNG addition decreases the performance values of torque, brake-specific fuel consumption, volumetric efficiency, brake thermal efficiency, while it decreases emissions of CO2, CO, HC, except NOx. Engine model results show that the maximum in-cylinder pressure is 72 bar at 722 crank angle degree (CAD), 68 bar at 730 CAD, and 60 bar at 735 CAD for gasoline, CNG, and G9C1, respectively. The cumulative heat release for gasoline is 9.09% higher than G9C1, while G9C1 is 15.71% higher than CNG. The CO2 mass fraction for gasoline is about 22.58% lower than G9C1, while it is 40.32% higher than CNG. The maximum mass fraction value of CO is 0.21, 0.17, and 0.08 for gasoline, CNG, and G9C1, respectively. The CO for G9C1 is overall 60.04% lower than CNG and 67.45% lower than gasoline. At maximum point, HC for G9C1 is 31.43% and 71.43% higher than gasoline and CNG, respectively. CNG has the highest level of NOx formation. Maximum NOx mass fractions are 0.0098, 0.0070, and 0.0043 for CNG, G9C1, and gasoline, respectively. After the ignition, the flame development is completed at 1.07, 1.18, and 1.28 ms for gasoline, G9C1, and CNG, respectively. Flame velocities are 28.52, 30.93, and 34.11 m/s for CNG, G9C1, and gasoline, respectively, at 2800 r/min and Φ = 1.1. When the time between ignition moment and top dead center moment is considered, the increment rate of flame center temperature is 904.19, 884.10, and 861.77 K/s for CNG, gasoline, and G9C1, respectively. The highest temperature increment rate occurs for CNG.

Funder

Scientific Research Coordination Unit of Kırıkkale University

Yenmak Automotive Inc

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3