A numerical study of ignition and flame development characteristics in GCI combustion using large eddy simulations and chemical explosive mode analysis

Author:

Zhao Yuanyuan1,Xu Chao2,Zhang Yan34,Yue Zongyu1ORCID,Wang Chenchen1,Ming Zhenyang1,Cai Yuqing1,Zheng Zunqing1,Wang Hu1ORCID,Yao Mingfa1ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, PR China

2. Transportation and Power Systems Division, Argonne National Laboratory, Lemont, IL, USA

3. CAEP Software Center for High Performance Numerical Simulation, Beijing, China

4. Institute of Applied Physics and Computational Mathematics, Beijing, China

Abstract

This work investigates the ignition and flame development processes of low reactivity fuel combustion under compression ignition conditions based on the large eddy simulation approach. The chemical explosive mode analysis (CEMA) is employed to characterize the local combustion features, including gas-liquid fuel zone, auto-ignition, diffusion-assisted, extinction, cool flame and post-ignition zone, among which auto-ignition and post-ignition are found to play a key role in the overall heat release process. The local flame propagation modes in gasoline compression ignition (GCI) are determined by quantifying the relative magnitude of diffusion/chemistry at a representative progress variable in the pre-ignition zone. The results show that autoignition fronts and deflagration waves exist simultaneously in the ignition and intense high temperature heat release (HTHR) stages, but autoignition fronts dominate. In addition, the chemical kinetic processes of four heat release periods are analyzed. The heat release during the ignition period is found to be dominated by the reactions CH3+ H (+M) <=> CH4 (+M) and CH3CHO + H <=> CH2CHO + H2. The reaction CH2OH + OH <=> CH2O + H2O always plays an important role in the heat releases during the other three combustion stages including intense HTHR, moderate HTHR and post-combustion.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3