Performance and emission characteristics of conventional diesel combustion/partially premixed charge compression ignition combustion mode switching of biodiesel-fueled engine

Author:

Singh Akhilendra Pratap1,Agarwal Avinash Kumar1ORCID

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Abstract

In this experimental study, a production grade engine was modified to operate in two combustion modes, namely conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) combustion, depending on the engine load. For mode switching, an open electronic control unit was programmed to operate the engine in PCCI combustion mode up to medium engine loads and then automatically switching it to CDC mode at higher engine loads, by varying the fuel injection parameters and the exhaust gas recirculation rate. For performance and emission characterization in the entire load range (idling-to-full load) of the test engine, a test cycle of 300 s was used, which included CDC mode, PCCI combustion mode, and transition between these two modes. Results showed that both mineral diesel and B20 (20% biodiesel blended with mineral diesel, v/v) fueled PCCI combustion resulted in significantly lower NOx and particulate emissions compared to baseline CDC. Relatively lower exhaust gas temperature in PCCI combustion mode led to slightly inferior engine performance and higher concentration of unregulated emission species such as SO2, HCHO, and so on. B20-fueled engine resulted in relatively lower unregulated emission species and particulates compared to the mineral diesel–fueled engine in both the combustion modes. In CDC mode, contributions of accumulation mode particles were significantly higher compared to nucleation mode particles. Relatively lower emission of aromatic compounds in PCCI combustion mode compared to CDC mode was another important finding of this study; however, B20-fueled engines resulted in slightly higher emissions of aromatic compounds.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3