Maximum efficiencies for internal combustion engines: Thermodynamic limitations

Author:

Caton Jerald A1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA

Abstract

The thermodynamic limitation for the maximum efficiencies of internal combustion engines is an important consideration for the design and development of future engines. Knowing these limits helps direct resources to those areas with the most potential for improvements. Using an engine cycle simulation which includes the first and second laws of thermodynamics, this study has determined the fundamental thermodynamics that are responsible for these limits. This work has considered an automotive engine and has quantified the maximum efficiencies starting with the most ideal conditions. These ideal conditions included no heat losses, no mechanical friction, lean operation, and short burn durations. Then, each of these idealizations is removed in a step-by-step fashion until a configuration that represents current engines is obtained. During this process, a systematic thermodynamic evaluation was completed to determine the fundamental reasons for the limitations of the maximum efficiencies. For the most ideal assumptions, for compression ratios of 20 and 30, the thermal efficiencies were 62.5% and 66.9%, respectively. These limits are largely a result of the combustion irreversibilities. As each of the idealizations is relaxed, the thermal efficiencies continue to decrease. High compression ratios are identified as an important aspect for high-efficiency engines. Cylinder heat transfer was found to be one of the largest impediments to high efficiency. Reducing cylinder heat transfer, however, is difficult and may not result in much direct increases of piston work due to decreases of the ratio of specific heats. Throughout this work, the importance of high values of the ratio of specific heats was identified as important for achieving high thermal efficiencies. Depending on the selection of constraints, different values may be given for the maximum thermal efficiency. These constraints include the allowed values for compression ratio, heat transfer, friction, stoichiometry, cylinder pressure, and pressure rise rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference23 articles.

1. Methods to improve efficiency of four stroke, spark ignition engines at part load

2. National Academy of Sciences. Real prospects for energy efficiency in the United States. Washington, DC: The National Academies Press, 2009.

3. Thermodynamic requirements for maximum internal combustion engine cycle efficiency. Part 1: Optimal combustion strategy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3