Thermodynamics of CMC bladed marine gas turbine-LM 2500: Effect of cycle operating parameters

Author:

Rathore SS1ORCID,Kar VR1,Sanjay 1

Affiliation:

1. National Institute of Technology Jamshedpur, Jamshedpur, India

Abstract

Recent developments in ceramic-matrix composites and their successful use in combustor liners and shrouds have generated interest among researchers to adopt these materials in rotating gas turbine blades, especially in the first stages of high-pressure turbines where gas temperatures are highest. CMC blades have the potential of being retrofitted to replace superalloy turbine blades in operating gas turbines. In this paper, a comparative study on the thermodynamic performance of a marine gas turbine engine, LM 2500, featuring directionally solidified nickel superalloy blades versus novel CMC blades in the high-pressure turbine sections has been reported. Mathematical modeling of the gas turbine cycle components has been developed and then coded in C++ language. The effects of turbine inlet temperature on thermodynamic efficiencies, coolant mass flow rates, and work ratios on the two systems have been analyzed. Finally, the exergy analysis of the systems’ components has been done to identify the benefits of adopting CMC blades in the LM 2500 system. It has been observed that when compared to the directionally solidified bladed turbine system, the projected first law efficiency of CMC bladed LM 2500 gas turbines can be enhanced over 7% (from 34.17% to 41.21%). The projected work ratio can be improved by over 16% (from 0.49 to 0.57) at the turbine inlet temperature of 1725 K.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3