On the rate of injection modeling applied to direct injection compression ignition engines

Author:

Payri Raul1,Gimeno Jaime1,Novella Ricardo1,Bracho Gabriela1

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Valencia, Spain

Abstract

Modern engine design has challenging requirements toward maximum power output, fuel consumption and emissions. For engine combustion development programs, the injection system has to be able to operate reliable under a variety of operating conditions. Today’s legislations for quieter and cleaner engines require multiple-injection strategies, where it is important to understand the behavior of the system and to measure the effect of one injection on subsequent injections. This study presents a methodology for zero-dimensional modeling of the mass flow rate and the rail pressure of a common rail system, constructed from a set of experimental measurements in engine-like operating conditions, for single- and multiple-injection strategies. The model is based on mathematical expressions and correlations that can simulate the mass flow rate obtained with the Bosch tube experiment, focusing on the shape and the injected mass, using few inputs: rail pressure, back pressure, energizing time and so on. The model target is to satisfy two conditions: lowest computational cost and to reproduce the realistic injected quantity. Also, the influence of the rail pressure level on the start of injection is determined, especially for multiple-injection strategies on the rate shape and injected mass. Good accuracy was obtained in the simulations. The results showed that the model error is within the 5%, which corresponds at the same time to the natural error of the injector and to the accuracy of the measures which had been done. The benefits of the model are that simulations can be performed quickly and easily for any operation points, and, on the other hand, that the model can be used in real-time on the engine test bench for mass estimations when doing additional experiments or calibration activities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3