Affiliation:
1. Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
Abstract
Ozone (O3) was introduced into the intake air to control the ignition in a gasoline compression ignition (GCI) engine. An early fuel injection at −68 °CA ATDC was adopted to mix the fuel with the reactive O-radicals decomposed from the O3, before the reduction of the O-radicals due to their recombination would take place. The second injection was implemented near top dead center to optimize the profile of the heat release rate. The engine experiments were performed around the indicated mean effective pressure (IMEP) of 0.67 MPa with a primary reference fuel, octane number 90 (PRF90), maintaining the 15% intake oxygen concentration with the EGR. The quantity of the first injection, the second injection timing as well as the ozone concentration were changed as experimental parameters. The results showed that the GCI operation with the ozone addition makes it possible to reduce the maximum pressure rise rate while attaining high thermal efficiency, compared to that without the ozone. Appropriate combinations of the ozone concentration and the first injection quantity achieve low smoke and NOx emissions. Further, the ozone-assisted GCI operation was compared with conventional diesel operation. The results showed that the indicated thermal efficiency of the ozone-assisted GCI combustion is slightly lower than that of the conventional diesel combustion, but that GCI assisted with ozone is highly advantageous to the smoke and NOx emissions.
Funder
Japan Society for the Promotion of Science
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献