Parametric evaluation of ducted fuel injection in an optically accessible mixing-controlled compression-ignition engine with two- and four-duct assemblies

Author:

Yraguen Boni Frances1ORCID,Steinberg Adam Michael1,Nilsen Christopher William2,Wengrove Drummond Edward2,Mueller Charles Jeffery2

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA, USA

2. Sandia National Laboratories, Livermore, CA, USA

Abstract

Ducted fuel injection (DFI) is a strategy to improve fuel/charge-gas mixing in direct-injection compression-ignition engines. DFI involves injecting fuel along the axis of a small tube in the combustion chamber, which promotes the formation of locally leaner mixtures in the autoignition zone relative to conventional diesel combustion. Previous work has demonstrated that DFI is effective at curtailing engine-out soot emissions across a wide range of operating conditions. This study extends previous investigations, presenting engine-out emissions and efficiency trends between ducted two-orifice and ducted four-orifice injector tip configurations. For each configuration, parameters investigated include injection pressure, injection duration, intake manifold pressure, intake manifold temperature, start of combustion timing, and intake-oxygen mole fraction. For both configurations and across all parameters, DFI reduced engine-out soot emissions compared to conventional diesel combustion, with little effect on other emissions and engine efficiency. Emissions trends for both configurations were qualitatively the same across the parameters investigated. The four-duct configuration had higher thermal efficiency and indicated-specific engine-out nitrogen oxide emissions but lower indicated-specific engine-out hydrocarbon and carbon monoxide emissions than the two-duct assembly. Both configurations achieved indicated-specific engine-out emissions for both soot and nitrogen oxides that comply with current on- and off-road heavy-duty regulations in the United States without exhaust-gas aftertreatment at an intake-oxygen mole fraction of 12%. High-speed in-cylinder imaging of natural soot luminosity shows that some conditions include a second soot-production phase late in the cycle. The probability of these late-cycle events is sensitive to both the number of ducted sprays and the operating conditions.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3