Reactive computational fluid dynamics modelling of methane–hydrogen admixtures in internal combustion engines: Part I – RANS

Author:

Koch Jann1,Schürch Christian1,Wright Yuri M12ORCID,Boulouchos Konstantinos1

Affiliation:

1. Laboratorium für Aerothermochemie und Verbrennungssysteme, ETH Zuerich, Zurich, Switzerland

2. Combustion and Flow Solutions GmbH, Zurich, Switzerland

Abstract

The effects of hydrogen addition to internal combustion engines operated by natural gas/methane has been widely demonstrated experimentally in the literature. Already small hydrogen contents in the fuel show promising benefits with respect to increased engine efficiency, lower CO2 emissions, extended lean operating limits and a higher exhaust gas recirculation tolerance while maintaining the knock resistance of methane. In this article, the influence of hydrogen addition to methane on a spark ignited single cylinder engine is investigated. This article proposes a modelling approach to consider hydrogen addition within three-dimensional reactive computational fluid dynamics in order to establish a framework to gain further insights into the involved processes. Experiments have been performed on a single-cylinder spark-ignition engine situated at a test bed and cater as reference data for validating the proposed reactive computational fluid dynamics modelling approach based around the G-Equation combustion model. Within the course of the first part, crucial aspects relevant to the modelling of the mean engine cycle are highlighted. In this article, a simplified early combustion phase model which considers the transition towards a fully developed turbulent flame following ignition is introduced, along with a second submodel considering combined effects of the walls. The sensitivity of the combustion process towards the modelling approach is presented. The submodels were calibrated for a reference operating point, and a sweep in hydrogen content in the fuel as well as stoichiometric and lean operation has been considered. It is shown that the flame speed coefficient A appearing in the used turbulent flame speed closure, weighting the influence of the turbulent fluctuating speed [Formula: see text], has to be adjusted for different hydrogen contents. The introduced submodels allowed for significant improvement of the in-cylinder pressure and heat release rate evolution throughout all considered operating conditions.

Funder

competence center of energy and mobility

Bundesamt für Energie

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3