An investigation of the effects of fuel injection pressure, ambient gas density and nozzle hole diameter on surrounding gas flow of a single diesel spray by the laser-induced fluorescence–particle image velocimetry technique

Author:

Zhu Jingyu1,Kuti Olawole Abiola1,Nishida Keiya1

Affiliation:

1. Department of Mechanical System Engineering, Hiroshima University, Japan

Abstract

The characteristics of ambient gas motion induced by a single diesel spray were measured quantitatively by using a laser-induced fluorescence–particle image velocimetry technique under non-evaporating quiescent conditions. The effects of fuel injection pressure, ambient gas density and nozzle hole diameter on the ambient gas mass flow rate into the spray through the whole spray periphery (spray side periphery and tip periphery) were investigated quantitatively according to the gas flow velocity measurements. The results show that the captured gas mass flow rate through the spray tip periphery is prominent in the whole periphery and the proportion of the gas entrainment through the spray side periphery increases with spray development. The higher injection pressure significantly enhances the total gas mass flow rate through the whole periphery; however, the increase in the ratio of ambient gas and fuel mass flow rate becomes moderate gradually with the increase in the injection pressure. The higher ambient gas density results in a slight increase in ambient gas flow velocity along the spray side periphery and the tip periphery and a reduction of the spray volume; however, the ambient gas mass flow rate was apparently enhanced. The smaller nozzle hole diameter results in a significant decrease in the ambient gas mass flow rate and an increase in the ratio of the gas and fuel mass flow rate. Numerical simulation results provide more understanding of the spray-induced gas flow field and validate the measurement accuracy of the laser-induced fluorescence–particle image velocimetry results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3