The role of system responses on biodiesel nitric oxide emissions in a medium-duty diesel engine

Author:

Knight B M1,Bittle J A1,Jacobs T J1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, Texas 77843-3123, USA

Abstract

The often-observed higher emission of nitrogen oxides with biodiesel, relative to petroleum diesel, is well-reported in the literature. Upon review of the literature, there seem to be two broad contributors that cause such a trend: those that are manifested by the effects of fuel property differences directly on in-cylinder processes and those that are manifested by the effects of fuel property differences on engine systems, thus rendering an indirect effect on in-cylinder processes. In this article, the former manifestations are called fundamental issues while the latter manifestations are called system response issues. Both can have significant impact on the magnitude and direction of nitrogen oxides emission differences between biodiesel and petroleum diesel fuels. This article has the objective to identify the distinction between fundamental and system response issues on nitric oxide emissions of biodiesel combustion in a diesel engine. It is noted that the article focuses mostly on the system response issues of a production-type engine, and will only briefly summarize some of the fundamental issues believed to most strongly contribute toward differences in nitric oxide emissions between fuels. Consequently, it is important to note (in fact, a major theme of the article) that many of the specific observations of this study will not necessarily transcend to generality across all engine platforms due to differences in engine technology and calibration; instead, the emphasis on the important role of potential system responses manifested by the use of different fuels of any engine system is meant to be the general contribution of this study. The study generally observes that biodiesel, in the absence of system response issues, emits higher NO x than petroleum diesel. System response issues, however, can have a dramatic impact on biodiesel NO x emissions. In some cases, system response issues may cause biodiesel NO x to be lower than petroleum diesel. Such system response issues highlight potential opportunities to mitigate or decrease biodiesel NO x emissions relative to petroleum diesel.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3