Affiliation:
1. School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
Abstract
Road vehicles account for a substantial portion of energy consumed by transportation. A large amount of this energy is lost to overcome friction within vehicle engines, in which the piston compression rings are a major source of such parasitic losses. The internal losses of engines increase several times in the case of unfavorable warm-up conditions. Recent developments in surface modification showed promising results in improving the frictional behavior of piston rings. Analyses are often idealized, such as isothermal conditions and unrealistic engine operating conditions. This study presents a numerical investigation of the frictional behavior of mixed-hydrodynamic interaction in a textured piston compression ring–cylinder liner during the warm-up process. The transient Reynolds equation is solved with a mass-conserving cavitation algorithm, realistic oil rheology, and practical engine operating conditions. Several multigrade and monograde oils are considered to draw comprehensive conclusions. The results show that ring surface texturing substantially reduces energy loss during the entire warm-up phase.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献