In-cycle combustion feedback control for abnormal combustion based on digital ion current signal

Author:

Liu Yintong12,Deng Jun1,Hu Zongjie1,Li Liguang13

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, China

2. Powertrain Engineering R&D Institute, Chongqing Changan Automobile Company Limited, Chongqing, China

3. Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai, China

Abstract

For better stability of ion current employed for in-cycle combustion diagnosis and feedback control, this research develops a digital post-processing unit for in-cylinder ion current signals. Based on the processed digital ion current signal, abnormal combustion in gasoline direct injection engine is successfully detected, and the in-cycle remedy feedback control is achieved as well. Both re-ignition and re-injection are utilized for misfiring remedy, and only re-injection is employed for knocking inhibition. The accuracy of misfiring diagnosis is achieved no less than 94%, and the re-injection combined with re-ignition operation is shown to be feasible for misfiring remedy as well. The accuracy of knocking diagnosis is around 85% (knocking rate = 20%). The re-injection under the pre-knocking condition is shown to be effective for knocking inhibition.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3