Optical study on a heavy-duty natural gas dual-fuel engine applying POMDME as pilot fuel

Author:

Mühlthaler Markus1ORCID,Prager Maximilian1ORCID,Jaensch Malte1ORCID

Affiliation:

1. Technical University of Munich (TUM), Munich, Germany

Abstract

In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition, and combustion of alternative fuels for the dual-fuel combustion process. POMDME substitutes the fossil pilot fuel as a drop-in, non-sooting alternative to widely eliminate the NOx-PM tradeoff. Furthermore, an optimized ignition behavior, increased degrees of freedom in combustion phasing, and the pilot’s energy content are expected. The flame luminosity transmitted via an optical piston was split in the optical path to record the natural flame luminosity simultaneously with an RGB high-speed camera. The second channel consisted of OH chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera. To investigate the combustion process spectrally, spatially, and temporally resolved in more detail, selected operating points were re-recorded via a high-speed imaging spectrograph. POMDME is benchmarked against regular diesel oil, according to EN590. Synthetic natural gas is applied as the primary gaseous fuel. Experimental sweeps along the overall pilot’s energy content (2%, 5%, 10%), injection pressure (500–1600 bar), and start of energizing (5–55 CAD bFTDC) are carried out. The given conditions result in decreased liquid-penetration length between 25% and 30% for the oxygenate, larger for earlier SOE and higher dilution. The lift-off length is nearer the liquid penetration length, increasing for higher rail pressures. The light-based ignition delay for EN590 is enlarged by 0.8 CAD after adding methane, while the oxygenate is not visibly retarded. Without methane, the oxygenate preceded EN590 by 0.6 CAD. The temporal and spatial position and extent of premixed, diffusive, and OH*, change significantly. RCCI operation at practically relevant 18.4 bar IMEP is demonstrated, highlighting the influence of the start of energizing variation with 51% decreased burn duration in the first half of combustion.

Funder

bundesministerium für wirtschaft und energie

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3