Analytical model for liquid film evaporation on fuel injector tip for the mitigation of injector tip wetting and the resulting particulate emissions in gasoline direct-injection engines

Author:

Alzahrani Fahad M12ORCID,Fatouraie Mohammad3,Sick Volker1ORCID

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

3. Robert Bosch LLC, Farmington Hills, MI, USA

Abstract

Unevaporated fuel films forming on the fuel injector tip of gasoline direct-injection engines burn in a diffusion flame at the time of spark, producing particulates and at some operating conditions, these films have been identified as the dominating source of particulate emissions. This work developed an analytical model for liquid film evaporation on the injector tip, that is, injector tip drying, for the mitigation of injector tip wetting and the resulting particulate emissions. The model explains theoretically how fuel films on the injector tip evaporate with time from the end of injection to the spark. The model takes into consideration engine operating conditions, including engine load and speed, tip and fuel temperatures, gas temperature and pressure, and fuel properties. The model explains the observed trends in particulate number (PN) emissions due to injector tip wetting. Engine experiments were used to validate the model by correlating the predicted film mass at the time of spark to measurements of PN emissions at different conditions. A tip drying time constant was also defined and was found to correlate well with the measured PN for all conditions tested. This time constant is a deterministic factor for mitigating tip wetting. In general, the results indicate that the liquid film evaporation on the injector tip follows a first order, asymptotic behavior. Furthermore, the tip drying physics causes the observed increasing and decreasing non-linear trends in PN emissions with the engine load and the available time for tip drying, respectively. Additionally, the liquid film evaporation on the injector tip is highly sensitive to most of the injector initial and boundary conditions, including the initial film mass after the end of injection, the wetted surface area, the available time for tip drying and the injector tip temperature. The initial film temperature has the least effect on film mass evaporation.

Funder

Robert Bosch

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3