The loosening mechanism of tin-bronze bushing assembled by interference at connecting rod small end of heavy-duty diesel engines

Author:

Fu Hongyu1,Zhang Hao1ORCID,Zhang Limin2,Niu Penghao1,Liu Xukang2,Stelmakh Oleksandr1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Department of Structural Technology, China North Engine Research Institute, Tianjin, China

Abstract

The commonly used spinning tin-bronze bushings assembled by interference sometimes fail causing the bushings to rotate or even come out from connecting rod small end. Previous studies have shown this failure to be related to the abnormal temperature of small end. Test samples with same material and process as the connecting rod small end were designed. The residual stress on inner surface and pressing force of bushings were tested before and after local heating. The results showed that the residual stresses on inner surface and maximum pressing force decrease with the increase of maximum temperature and thermal cycles when the temperature of bushing bottom reaches 160°C. A quarter model of connecting rod was applied to reveal the loosening mechanism. It is found that plastic deformation occurs around oil holes, resulting in variations in the stress field of bushing. It lessens the bonding force between bushing and connecting rod small end. Meanwhile, the residual stresses on inner surface decrease and then surface hardness of this area reduces, which makes it easier to adhere with piston pin and generate large friction. These results are crucial for the material and structure design of connecting rod small end bushings.

Funder

national natural science foundation of china

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3