Visualization of diesel spray and combustion from lateral side of two-dimensional piston cavity in rapid compression and expansion machine

Author:

Fan Chengyuan1ORCID,Wang Daoyuan1,Nishida Keiya1,Ogata Yoichi1

Affiliation:

1. Department of Mechanical System Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

Abstract

Effect of spray/wall interaction in a rapid compression and expansion machine on mixture formation, ignition location, and soot generation was investigated. A two-dimensional piston cavity designed as the cross section of a reentrant piston was utilized to observe the spray and combustion process from the lateral side. The experiment was conducted at 120 MPa injection pressure under single and split injection strategies with an ambient gas of 15% O2 concentration. A shadow methodology was applied to investigate the interaction between the fuel spray and the piston cavity. Combined with the natural flame luminosity captured by a high-speed color video camera, the behaviors of the impinging spray and the combustion process were studied. The combustion characteristics of the in-cylinder pressure, heat release and combustion phase were recorded and analyzed simultaneously. The results showed that the split injection strategies effectively softened the heat release trace and promoted the onset of the main combustion. The cool-flame phenomenon was captured by using the high-speed color video camera, and the intense ignition was observed when the pilot spray was controlled to impinge on the lower lip of the piston rim. Moreover, results also showed that further extending the mixing process of the pilot spray is inclined to form a homogeneous mixture which was beneficial for the promotion of low-temperature combustion and the reduction of soot generation. This research provides a detailed investigation on the spray and combustion process and it highlights the significant effect of spray/wall interaction on the subsequent combustion process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3