Experimental study on the transient-state performance of diesel engines at different speeds using the synergistic regulation of VGT and VVT

Author:

Dai Ziyang1,Li Jie1,Liang Hengsheng1,Yu Xiaoyang2,Wu Binyang2ORCID

Affiliation:

1. Weichai Power, Shandong, China

2. State Key Laboratory of Engines, Tianjin University, Tianjin, China

Abstract

Heavy-duty diesel engines, the heat engines with the highest thermal efficiency, usually operate under transient conditions. Thus, it is important to study the transient performance of heavy-duty diesel engines. This paper aims to solve the problems of combustion deterioration, poor response, and emission deterioration caused by the mismatch between the air intake response and the fuel system under the strong transient condition of sudden loading of 1 s under constant speed. In this paper, an experimental study on the transient performance at different speeds under the coordinated regulation of a variable geometry turbocharger (VGT) and variable valve timing (VVT) is conducted. The study found that the transient torque response is affected by combustion in the cylinder and pump work. During the low-speed transient process, due to reduced airflow and pumping losses, the VVT is switched off while the VGT delay is increased to improve air response. Consequently, the mixture in the cylinder is fully burned, and improved transient performance is obtained. In the high-speed transient process, the engine air intake flow is improved. Through the VVT is ON at the appropriate time and the VGT hysteresis control, the pumping loss can be effectively reduced, and excellent transient performance can be achieved to ensure the fast response of the in-cylinder charge. Given sudden loading from 10% to 100% within 1 s under a high speed of 1600 r/min, the VVT switches on with a 0.15 s delay, and the VGT is controlled with a 0.4 s delay. A torque response of 0.82 s can be achieved, and the soot peak value is reduced by 66.26%, and the accumulated value of soot is reduced by 46.91%. At a low speed of 1000 r/min, given sudden loading from 10% to 100% within 1 s, the 0.6 s VGT delay can reduce the accumulated value of soot by 78.57% and 56.22% compared with delays of 0.2 and 0.4 s.

Funder

National Key Research and Development Program of China

State Key Laboratory of Engines

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3