Affiliation:
1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
2. General Motors, Warren, MI, USA
Abstract
Studies on eco-driving have mostly taken an energy-centric view and considered driving performance, while less attention has been paid on emissions behavior. This work extends in an experimentally verified way our understanding of the trade-offs among fuel economy, driving aggressiveness, and, especially, emissions in connected automated diesel-powered vehicles. Experiments are performed with a 6.7-L Ford Powerstroke diesel engine, a urea-SCR based NOx aftertreatment system, and a full model for a Ford F250 medium-duty truck in the loop to provide realistic assessment of fuel consumption, tailpipe emissions, and driving style performances. An energy and emissions conscious speed planner is leveraged to follow the traffic. This planner offers flexibility in prioritizing energy or emissions while satisfying user-defined headway constraints, and thus allows exploration of different calibrations in a unified way. Results show how various calibrations of the flexible leader following policy yield 8%–14% decrease in total fuel consumption and 64%–70% decrease in tailpipe emissions compared with a strictly constrained following policy.
Funder
National Science Foundation
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献