Effect of pre-chamber scavenging strategy on EGR tolerance and thermal efficiency of pre-chamber turbulent jet ignition systems

Author:

Atis Cyrus Ashok Arupratan1ORCID,Ayele Yidnekachew1ORCID,Stuecken Thomas1,Schock Harold1

Affiliation:

1. Michigan State University, East Lansing, MI, USA

Abstract

Dual Mode, Turbulent Jet Ignition (DM-TJI) is an engine combustion technology that incorporates an auxiliary air supply apart from the auxiliary fuel injection inside the pre-chamber of a divided chamber ignition concept. Compared to other active (auxiliary fueled) and passive pre-chamber ignition technologies, the DM-TJI system has the distinct capability to operate with very high level (up to ∼50%) of recirculated exhaust gas (EGR). Thus, unlike typical lean (excess air dilution) operated pre-chamber ignition technologies, the DM-TJI system enables the use of widely utilized low cost three-way-catalyst (TWC) while still running at high level of dilution (with EGR). The supplementary air supply to the pre-chamber enables effective purging and ignitable mixture formation inside the pre-chamber even with very high external EGR rate. The current work presents the results of experimental investigation conducted on a Prototype III Dual Mode, Turbulent Jet Ignition (DM-TJI) (or Jetfire ignition) single cylinder metal engine. Different pre-chamber scavenging/fueling strategies (active vs passive) were investigated in order to compare the EGR dilution tolerances between different scavenging configurations under identical pre-chamber design parameters (pre-chamber volume and nozzle configuration). Tests were conducted at two regularly encountered operating conditions (6 and 10 bar IMEPg at 1500 rpm) in typical drive cycles. Results are also compared with the conventional SI (spark ignition) configuration on the same engine. The results indicate that to maintain very high EGR diluted (up to ∼50%) operation the auxiliary air supply to the pre-chamber is of paramount importance. The analysis found that DM-TJI/Jetfire ignition system is more effective in terms of thermal efficiency at high load knock limited situation due to its considerably higher external EGR dilution tolerance. Higher EGR rate offered better combustion phasing and improved thermal efficiency considerably. It was found that with the elevated 13.3:1 compression ratio and 10 bar load, SI could not maintain knock free stable operation and DM-TJI/Jetfire delivered 7%–9% improvement in thermal efficiency compared to TJI mode of operation with no air delivery to the pre-chamber.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference49 articles.

1. United States Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks fast facts and data highlights, April 2020.

2. U.S. Energy Information Administration. Annual energy outlook 2020 with projections to 2050, 2020.

3. Developing a Spark-Ignition Engine with 45 % Efficiency

4. Pre-Chamber Ignition as a Key Technology for Future Powertrain Fleets

5. Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3