Numerical study of lubricant oil drop induced pre-ignition in engines

Author:

Ullal Ankith1ORCID,Ra Youngchul1

Affiliation:

1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA

Abstract

Pre-ignition in engines has been the subject of current research with the advent of boosted engines for reduced fuel consumption and emissions. Lube-oil-drop-induced pre-ignition was observed in large natural gas engines which find application in the marine industry. In order to understand the mechanism of pre-ignition in the present study, a computational simulation of pre-ignition by lube-oil drops was performed for a production natural gas marine engine. The engine grid was generated using ICEM tool. For CFD simulations, an in-house version of KIVA4 code was employed. Oil throw-off into the combustion chamber was modeled by a lube oil stripping model, which sets the criteria for oil drops to be stripped from the piston rings/crevice regions and enter the combustion chamber. To capture the ignition caused by the stripped oil drops precisely, single particle ignition cell (SPIC) model was used that utilizes computations of thermal and chemical changes in refined grid cells for the lube oil containing computational cells. For modeling chemical kinetics, a reduced lube oil reaction mechanism previously developed was used. Factors affecting the lube oil stripping process such as thickness, velocity, and temperature of the lube film and its subsequent pre-ignition behavior were studied and discussed. Higher initial thickness, higher film temperature and higher initial film velocity all lead to earlier stripping of lube-oil film into the combustion chamber. Once the film is stripped, keeping the local lube vapor equivalence ratio low is the key to prevent pre-ignition.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3