Turbulent flow development within the discharge cavity of a screw compressor

Author:

Nouri Jamshid M1ORCID,Guerrato Diego2,Stosic Nikola1,Yan Youyou1

Affiliation:

1. Department of Engineering, Mechanical Engineering and Aeronautics, City, University of London, London, UK

2. Delphi Diesel System, Kent, UK

Abstract

Spatial flow field velocities within the discharge cavity of an optical screw compressor have been measured using LDV and PIV techniques. Angle-resolved velocities were obtained over a time window of 1° at a speed of 1000 rpm, pressure ratio of 1 and temperature of 55°C. Comparison between the LDV and PIV results showed very good agreement and provided a good level of confidence in the presented data. Overall, the flow field results revealed the presence of a complex, turbulent, 3D and vortical flow structure within the discharge cavity. LDV measurements at the exit of the discharge port showed that the inflow into the cavity has two distinct flow features that includes undulated velocity profiles with high gradient during the opening of the port, and uniform jet-like flows during the rest of the time. The energy necessary to create that jet-like flow was from the built-in pressure in the rotors. Turbulence fluctuations were high and followed the mean flow variations with values up to 35% of the mean values during the undulating flow. PIV spatial mean flow measurements showed a uniform axial flow close to bottom of cavity that has been transformed to a stable solid body vortex at the top of the cavity. These measurements within the discharge cavity are made for the first time and they are unique and in great detail that can be used for validation of CFD codes and optimisation of compressors to improve their efficiency for different system applications. Graphical abstract [Formula: see text]

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3