An experimental investigation on spray, performance and emission of hydrotreated waste cooking oil blends in an agricultural engine

Author:

Kumar Naveen1,Sonthalia Ankit12ORCID,Tomar Mukul1,Koul Rashi13

Affiliation:

1. Center for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Delhi, India

2. Department of Automobile Engineering, SRM Institute of Science and Technology, Ghaziabad, India

3. Department of Mechanical Engineering, Amity University, Gurgaon, India

Abstract

Biomass-based fuels are gaining importance for operating a compression ignition engine as they can curb greenhouse gases and are a key for addressing the energy security. Hydrotreated oil is considered to be a potential drop-in fuel for the compression ignition engine as its cetane number is higher than fossil diesel. In this study, hydrotreated waste cooking oil and its blends (10%, 20%, 30%, 40% and 50% by volume) with diesel were prepared. The ignition probability of the test fuel samples was found using a hot-plate test setup. The neat hydrotreated fuel has higher ignition probability at a particular temperature than the other test fuels. The Sauter mean diameter of the test fuels was also observed using a Malvern Spraytec test setup. The results reveal that the neat hydrotreated fuel has higher Sauter mean diameter due to its high viscosity. As the percentage of the hydrotreated fuel in the blend decreases, the Sauter mean diameter decreases and diesel has the lowest Sauter mean diameter. The test fuels were also used to run a compression ignition engine. The results reveal a decrease in brake thermal efficiency with the increase in the hydrotreated fuel share in the blend. The heat release for the blends starts earlier than diesel and the peak heat release is also lower than diesel. The HC, CO and smoke emissions for the test blends decreases up to 30% blend. When the percentage of the hydrotreated oil is further increased, the emissions starts increasing. The NO emissions were lower than diesel for all the test samples. As compared to diesel, the maximum reduction in NO (neat), HC (30% blend), CO (30% blend) and smoke emissions (30% blend) is 23.2%, 14.4%, 13.83% and 13.3%, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3