Scaling and dimensional methods to incorporate knock and flammability limits in models of high-efficiency gasoline and ethanol engines

Author:

Lewis Anne1,Ortiz-Soto Elliott1,Lavoie George1,Assanis Dennis N2

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

2. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA

Abstract

Recent work has shown the utility of using simplified models with prescribed burn rates to assess the potential of advanced combustion strategies to increase engine efficiency. However, this approach can be improved by incorporating knock and flammability limits. This work incorporates such limits using a combination of simplified conceptual models that are based on theoretical understanding of knock and flame phenomenon and calibration with experimental results. Using this method, the ideal (unconstrained) and feasible (constrained by knock and flammability) potential of a high efficiency gasoline and E85 engine are compared against a baseline naturally aspirated gasoline engine. Turbocharging, dilution with EGR, and higher compression ratios are used to increase the efficiency potential of the high efficiency gasoline and E85 engines. Results demonstrate the benefit of using this simplified approach in modeling high efficiency engines: the high efficiency gasoline engine is most limited by knock while the E85 engine is limited much less; also increased EGR can be used for the E85 engine due to the higher flame speeds of ethanol. Fuel economy maps are created for each engine/fuel strategy and evaluated in a vehicle model to obtain fuel economy results. Results comparing feasible engines show that peak brake thermal efficiency (BTE) is increased by 11.4% for the high efficiency gasoline engine and 17.8% for the E85 engine, as compared to the baseline gasoline engine. Projected vehicle fuel economy (energy equivalent) improvements are 30.1% for the high efficiency gasoline, and 40.9% for the E85 engine relative to baseline.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3