Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines

Author:

Alger T1,Gingrich J1,Roberts C1,Mangold B1

Affiliation:

1. Department of Engine and Vehicle Research, Southwest Research Institute, San Antonio, Texas, USA

Abstract

Modern gasoline engines face fuel-efficiency challenges due to inherent limitations including knock, pumping losses, and fuel enrichment. The addition of exhaust-gas recirculation (EGR) has been shown to improve the fuel consumption of gasoline engines, either port fuel injected or direct injected, by reducing pumping losses and knock and eliminating the enrichment region. In addition, the use of EGR has been shown to substantially reduce emissions of nitrogen oxides (NO x) and CO. A 2.4-litre multi-point injection engine and a 1.6-litre gasoline direct injection engine were run with high levels of both cooled and uncooled EGR. Unlike numerous previous publications, these engines included a modified ignition system that allows extension of the cooled EGR limit of the engine to greater than 25 per cent and improves combustion at lower EGR levels. The results showed that an improvement of between 5 and 30 per cent in fuel consumption is possible, with the largest improvement occurring in the typical enrichment region. In addition, the results showed that EGR can reduce knock, resulting in an improvement in combustion phasing. Finally, the high levels of EGR reduced the emissions of CO by 30 per cent and of NO x by up to 80 per cent. A detailed effort has been made to quantify the sources of improvement throughout the engine cycle and to demonstrate an EGR strategy (cooled EGR at high loads, internal EGR at low loads) that will maximize fuel consumption improvements. The results presented here indicate that the use of EGR in gasoline engines has the potential to reduce fuel consumption and emissions in a very cost-effective manner.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3