Cycle-based LQG knock control using identified exhaust temperature model

Author:

Tang Jian1ORCID,Dai Wen2,Archer Chad2,Yi James2,Zhu Guoming1ORCID

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA

2. Ford Motor Company, Dearborn, MI, USA

Abstract

Spark ignition engines are often desired to be operated close to their knock borderline when MBT (maximum brake torque) cannot be achieved for optimizing combustion efficiency. Under this circumstance, a calibrated baseline spark timing, along with other control parameters such as intake and exhaust valve timings, is found for the engine control system to maximize fuel economy, and a stochastic scheme can be used for the control based on a large number of history data. However, cycle-to-cycle combustion variations still exist, resulting in a relatively conservative baseline control. To reduce cycle-to-cycle combustion variations, a real-time cycle-wised knock compensation is required. The correlation between exhaust temperature at the current cycle and knock intensity at the next cycle was found in our earlier research. In this paper, a cycle-to-cycle spark timing compensation scheme is developed based on the measured exhaust temperature when the engine is operated close to its knock borderline. To make model-based control possible, [Formula: see text]-Markov COVER (COVariance Equivalent Realization) system identification was used to obtain a linearized engine exhaust system model from incremental spark timing to associated exhaust temperature and knock intensity. Accordingly, a Linear–Quadratic–Gaussian (LQG) controller is designed, based on the identified model, to minimize the knock intensity fluctuations based on incremental exhaust temperature variation. The LQG control strategy was integrated with the existing entire knock control architecture, where the baseline spark timing is generated based on the offline machine training with an online updating scheme developed earlier, and demonstrated experimentally. Note that the cycle-based compensation only adds incremental spark timing to the baseline control so that knock combustion variations can be reduced. Three test scenarios are used to demonstrate the effectiveness of the proposed cycle-to-cycle compensation scheme when the engine is knock-limited. With the help of cycle-to-cycle based compensation, it was demonstrated that engine spark timing can be further advanced about one crank degree while maintaining the same knock intensity up-limit due to reduced knock combustion variations. Note that this is corresponding to 0.5%–1.0% fuel economy for this engine when it is operated under knock condition.

Funder

FordMSU Alliance Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3