Study of a new mechanical variable valve actuation system: Part I—valve train design and friction modeling

Author:

Gimelli Alfredo1,Muccillo Massimiliano1,Pennacchia Ottavio1

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II

Abstract

This article addresses the design of a new mechanical Variable Valve Actuation (VVA) system. The basic scheme consists of three main elements, which enable valve lift variation. Although VVA systems could reduce the specific fuel consumption due to an important de-throttling of the intake system, the systems can lead to higher friction losses due to the increased number of components. For this reason, a specific numerical algorithm was implemented to determine either the cam profile or the kinematic and dynamic characteristics of the entire system. In this way, it was possible to estimate the instantaneous and average power dissipated by the frictions for the actuation of each valve. These evaluated frictions will be used in Part II for the estimation of the actual improvement in terms of specific fuel consumption at part load net of the increased mechanical power dissipated when compared to a conventional valve train. A preliminary thermo-fluid dynamic analysis revealed that the proposed variable valve actuation system is unable to significantly reduce the specific fuel consumption because of the inability to carry out valve actuation strategies that reduce the pumping work. A more flexible mechanical VVA system has been thus developed, which is able to allow intake valve deactivation, as well as variation in valve lift, timing and duration. Finally, in Appendix 1, an analytical procedure aimed at the determination of the geometry of the conjugate profiles of a generic mechanism has been described with the aim of obtaining a general methodology for the design of a mechanical VVA system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3