Development of a Kalman filter estimator for simulation and control of particulate matter distribution of a diesel catalyzed particulate filter

Author:

Singalandapuram Mahadevan Boopathi1,Johnson John H1,Shahbakhti Mahdi1

Affiliation:

1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI, USA

Abstract

The knowledge of the temperature and particulate matter mass distribution is essential for monitoring the performance and durability of a catalyzed particulate filter. A catalyzed particulate filter model was developed, and it showed capability to accurately predict temperature and particulate matter mass distribution and pressure drop across the catalyzed particulate filter. However, the high-fidelity model is computationally demanding. Therefore, a reduced order multi-zone particulate filter model was developed to reduce computational complexity with an acceptable level of accuracy. In order to develop a reduced order model, a parametric study was carried out to determine the number of zones necessary for aftertreatment control applications. The catalyzed particulate filter model was further reduced by carrying out a sensitivity study of the selected model assumptions. The reduced order multi-zone particulate filter model with 5 × 5 zones was selected to develop a catalyzed particulate filter state estimator considering its computational time and accuracy. Next, a Kalman filter–based catalyzed particulate filter estimator was developed to estimate unknown states of the catalyzed particulate filter such as temperature and particulate matter mass distribution and pressure drop (Δ P) using the sensor inputs to the engine electronic control unit and the reduced order multi-zone particulate filter model. A diesel oxidation catalyst estimator was also integrated with the catalyzed particulate filter estimator in order to provide estimates of diesel oxidation catalyst outlet concentrations of NO2 and hydrocarbons and inlet temperature for the catalyzed particulate filter estimator. The combined diesel oxidation catalyst–catalyzed particulate filter estimator was validated for an active regeneration experiment. The validation results for catalyzed particulate filter temperature distribution showed that the root mean square temperature error by using the diesel oxidation catalyst–catalyzed particulate filter estimator is within 3.2 °C compared to the experimental data. Similarly, the Δ P estimator closely simulated the measured total Δ P and the estimated cake pressure drop error is within 0.2 kPa compared to the high-fidelity catalyzed particulate filter model.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3