A comparative study into the effects of pre and post catalyst exhaust gas recirculation on the onset of knock

Author:

Parsons Dominic1ORCID,Orchard Simon1,Evans Nick1,Ozturk Umud1,Burke Richard1ORCID,Brace Chris1

Affiliation:

1. University of Bath, Bath, UK

Abstract

Exhaust gas recirculation (EGR) is proven as a valuable technology for controlling knock whilst maintaining lambda one operation, and is also capable of providing efficiency gains at low load. Despite this few studies in the literature address the question of EGR composition effects, namely whether the EGR gas is sourced from before or after the catalyst, and this remains an area which is often overlooked whilst investigating EGR performance. This paper demonstrates a novel method combining experiment air-path emulation and in-depth data processes to compare the effect of EGR catalysis on the angle of knock onset in a 1L GDI engine. Since initial temperature and pressure have a significant impact on knocking behaviour, an artificial boosting rig replaced the turbomachinery. This enabled fine control over the engine boundary conditions to ensure parity between the catalysed and un-catalysed cases. To overcome the difficulty of comparing stochastic phenomena in an inherently variable dataset, a pairing method was combined with Shahlari and Ghandhi’s angle of knock onset determination method to assess the effects of EGR composition on knock onset for EGR rates ranging from 9% to 18%. The air path emulation system stabilised the engine combustion to provide a suitably rich dataset for analysing knock using the pairing method. Catalysed EGR improved the mean knock onset angle by 0.55 CAD, but due to the inherent variability in cylinder pressure data this only equated to a 58.3% chance of a later knock onset angle for catalysed EGR in any given pair of comparative cycles.

Funder

Innovate UK

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3