Simulation of deep-bed filtration of a gasoline particulate filter with inhomogeneous wall structure under different particle size distributions

Author:

Li Zhijun1ORCID,Shen Boxi1,Zhang Yanke1,Kong Xiangjin1,Li Shilong1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, China

Abstract

In order to describe the microstructure of the porous wall of a gasoline particulate filter (GPF), a pore size distribution based on a probability density function (PDF) and a non-uniform porosity distribution are introduced. The dynamic process of deep-bed filtration in GPF with inhomogeneous wall structure is studied, considering different particle size distributions (PSDs). The results show that most of the particles are captured in the top region of the porous wall, in which the porosity and permeability reduce more obviously during dynamic filtration, and the bottom of the porous wall contributes little to the overall filtration. As time increases, the filtration efficiency of the porous wall for each particle size increases, and the most penetrating particle’s diameter becomes smaller gradually. The dynamic evolution of characteristic parameters of the porous wall, the most efficient filtration region, the pressure drop and the duration of deep-bed filtration are strongly influenced by PSD. This research illustrates the necessity to consider difference of PSDs when working on the filtration process of GPFs.

Funder

State Key Laboratory of Automotive Safety and Energy

National Natural Science Foundation of China

National Engineering Laboratory for Mobile Source Emission Control Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3