Affiliation:
1. Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, USA
Abstract
Accurate control of combustion phasing is indispensable for diesel engines due to the strong impact of combustion timing on efficiency. In this work, a non-linear combustion phasing model is developed and integrated with a cylinder-specific model of intake gas. The combustion phasing model uses a knock integral model, a burn duration model, and a Wiebe function to predict CA50 (the crank angle at which 50% of the mass of fuel has burned). Meanwhile, the intake gas property model predicts the exhaust gas recirculation fraction and the in-cylinder pressure and temperature at intake valve closing for different cylinders. As such, cylinder-to-cylinder variation of the pressure and temperature at intake valves closing is also considered in this model. This combined model is simplified for controller design and validated. Based on these models, two combustion phasing control strategies are explored. The first is an adaptive controller that is designed for closed-loop control and the second is a feedforward model–based control strategy for open-loop control. These two control approaches were tested in simulations for all six cylinders, and the results demonstrate that the CA50 can reach steady-state conditions within 10 cycles. In addition, the steady-state errors are less than ±0.1 crank angle degree with the adaptive control approach and less than ±1.3 crank angle degree with feedforward model–based control. The impact of errors on the control algorithms is also discussed in the article.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Reference30 articles.
1. Heywood JB. Internal combustion engine fundamentals (Indian Edition 2011). New York: McGraw-Hill Companies, Inc. 2011, pp.390, 501, 586–592.
2. Introduction to Internal Combustion Engines
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献