Optical characterization of stratified-premixed natural gas direct-injection combustion regimes

Author:

Rochussen Jeremy1ORCID,Knight Matthew1ORCID,Clark Gibson1ORCID,Kirchen Patrick1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada

Abstract

Gaseous fuels for heavy-duty internal combustion engines provide inherent advantages for reducing CO2, particulate matter (PM), and NOX emissions. Pilot-ignited direct-injected NG (PIDING) combustion uses a small pilot injection of diesel to ignite a late-cycle main direct injection of NG, resulting in significant reduction of unburned CH4 emissions relative to port-injected NG. Previous works have identified NG premixing as a critical parameter establishing indicated efficiency and emissions performance. To this end, a recent experimental investigation using a metal engine identified six general regimes of PIDING heat release and emissions behavior arising from variation of NG stratification through control of relative injection timing (RIT) of the NG with respect to the pilot diesel. The objective of the current work is to provide comprehensive description of in-cylinder fuel mixing of direct injected gaseous fuel and its impacts on combustion and pollutant formation processes for stratified PIDING combustion. In-cylinder imaging of OH*-chemiluminescence (OH*-CL) and PM (700 nm), and measurement of local concentration of fuel is considered for 11 different [Formula: see text], representing 5 regimes of stratified PIDING combustion (performed with [Formula: see text] MPa and [Formula: see text]). The magnitude and cyclic variability of premixed fuel concentration near the bowl wall provides direct experimental validation of thermodynamic metrics ([Formula: see text], [Formula: see text], [Formula: see text]) that describe the fuel-air mixture state of all 5 regimes of PIDING combustion. The local fuel concentration develops non-monotonically and is a function of RIT. High indicated efficiency and low CH4 emissions previously observed for stratified-premixed PIDING combustion in previous (non-optical) investigations are due to: (i) very rapid reaction zone growth ([Formula: see text] m/s) and (ii) more distributed early reaction zones when overlapping pilot and NG injections cause partial pilot quenching. These results connect and extend the findings of previous investigations and guide the future strategic implementation of NG stratification for improved combustion and emissions performance.

Funder

canada foundation for innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3