Simultaneous NOx and NH3 slip prediction in a SCR catalyst under real driving conditions including potential urea injection failures

Author:

Pla Benjamin1ORCID,Piqueras Pedro1ORCID,Bares Pau1ORCID,Aronis André1ORCID

Affiliation:

1. CMT – Motores Térmicos, Universitat Politècnica de València, Valencia, Spain

Abstract

To reach the emission limits imposed by governments and reduce the negative impact on the environment, the use of aftertreatment systems has become essential for internal combustion engine (ICE) based powertrains. In particular, the selective catalytic reduction (SCR) system is a widespread aftertreatment technology with high efficiency for [Formula: see text] abatement which shows complex dynamics and requires urea injection as reducing agent. Current urea injection strategies usually rely on the [Formula: see text] emissions feedback. This work presents a model for the on-line simultaneous prediction of [Formula: see text] and [Formula: see text] emissions after the SCR catalyst, allowing the emissions estimation even in conditions of urea injector failure, when it is not possible to rely on the injector feedback signal. The proposed model is based on state of the art on-board after-treatment instrumentation and proposes an extended Kalman filter (EKF) to combine a data-based model and the analysis of sensor signals to provide a reliable estimation of [Formula: see text] and [Formula: see text] slip. The proposed strategy is experimentally assessed in dynamic driving cycles, such as Worldwide harmonised Light vehicles Test Cycle (WLTC) and Standardised Random Test (RTS). The proposed method is evaluated in standard conditions (without failures) and with urea injection failures of 25% and 120% of the nominal injection amount. As a result, the prediction on [Formula: see text] and [Formula: see text] slip has been improved in all injection failure conditions, by an overall average of 47.8% and 61.8%, respectively, when compared to state-of-the-art control oriented models (physically based zero dimensional model or data-based).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3