Evaluation of the Thermal NO formation mechanism under low-temperature diesel combustion conditions

Author:

Desantes José María1,López José Javier1,Redón Pau1,Arrégle Jean2

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Spain

2. Departamento de Máquinas y Motores Térmicos, Universitat Politècnica de València, Spain

Abstract

Over the past two decades, the amount of exhaust gas pollutants emissions has been significantly reduced due to the severe emission legislation imposed in most countries worldwide. Initial strategies simply required the employment of simple after-treatment and engine control devices; however, as the restrictions become more stringent, these strategies are evolving in the development of different combustion modes, specially characterized by having low-temperature combustion characteristics. These new working conditions demand the need to check the suitability of the current NO predictive models that coexist nowadays under standard diesel combustion characteristics, paying closer attention to the Thermal mechanism. In order to do so, a common chemical-kinetic software was employed to simulate, for n-heptane and methane fuels, fixed local conditions (standard diesel and low-temperature combustion) described by constant pressure, relative mixture fraction, oxygen mass fraction and initial and final reaction temperature. The study reflects a common trend between all the studied cases, independently of the considered local conditions, making it applicable to more complex situations such as real NO formation processes in diesel sprays. This relationship was characterized by a fourth-degree polynomial equation capable of substantially improving the NO prediction by just using the Thermal NO predictive model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3