Twitter sentiment analysis using fuzzy integral classifier fusion

Author:

Emadi Mehdi12,Rahgozar Maseud1ORCID

Affiliation:

1. School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Iran

2. Electrical and Computer Engineering Department, Babol Noshirvani University of Technology, Iran

Abstract

A thorough analysis of people’s sentiment about a business, an event or an individual is necessary for business development, event analysis and popularity assessment. Social networks are rich sources of obtaining user opinions about people, events and products. Sentiment analysis conducted using multiple user comments and messages on microblogs is an interesting field of data mining and natural language processing (NLP). Different techniques and algorithms have recently been developed for conducting sentiment analysis on Twitter. Different proposed classification and pure NLP-based methods have different behaviours in predicting sentiment orientation. In this study, we combined the results of the classic classifiers and NLP-based methods to propose a new approach for Twitter sentiment analysis. The proposed method uses a fuzzy measure for determining the importance of each classifier to make the final decision. Fuzzy measures are used with the Choquet fuzzy integral for fusing the classifier outputs in order to generate the final label. Our experiments with different Twitter sentiment datasets show that fuzzy integral-based classifier fusion improves the average accuracy of sentiment classification.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference50 articles.

1. Sentiment Analysis and Opinion Mining

2. Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. Report, University of Stanford, Stanford, CA, December 2009.

3. Combining Pattern Classifiers

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3