Classifier and feature set ensembles for web page classification

Author:

Onan Aytuğ1

Affiliation:

1. Celal Bayar University, Turkey

Abstract

Web page classification is an important research direction on web mining. The abundant amount of data available on the web makes it essential to develop efficient and robust models for web mining tasks. Web page classification is the process of assigning a web page to a particular predefined category based on labelled data. It serves for several other web mining tasks, such as focused web crawling, web link analysis and contextual advertising. Machine learning and data mining methods have been successfully applied for several web mining tasks, including web page classification. Multiple classifier systems are a promising research direction in machine learning, which aims to combine several classifiers by differentiating base classifiers and/or dataset distributions so that more robust classification models can be built. This paper presents a comparative analysis of four different feature selections (correlation, consistency, information gain and chi-square-based feature selection) and four different ensemble learning methods (Boosting, Bagging, Dagging and Random Subspace) based on four different base learners (naive Bayes, K-nearest neighbour algorithm, C4.5 algorithm and FURIA algorithm). The article examines the predictive performance of ensemble methods for web page classification. The experimental results indicate that feature selection and ensemble learning can enhance the predictive performance of classifiers in web page classification. For the DMOZ-50 dataset, the highest average predictive performance (88.1%) is obtained with the combination of consistency-based feature selection with AdaBoost and naive Bayes algorithms, which is a promising result for web page classification. Experimental results indicate that Bagging and Random Subspace ensemble methods and correlation-based and consistency-based feature selection methods obtain better results in terms of accuracy rates.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3