Exploiting user network topology and comment semantic for accurate rumour stance recognition on social media

Author:

Luo Yongcong1ORCID,Ma Jing2,Yeo Chai Kiat3

Affiliation:

1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, China; School of Computer Science and Engineering, Nanyang Technological University, Singapore

2. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, China

3. School of Computer Science and Engineering, Nanyang Technological University, Singapore

Abstract

Online social media (OSM) has become a hotbed for the rapid dissemination of disinformation or fake news. In order to recognise fake news and guide users of OSM, we focus on the stance recognition of comments, posted on OSM on the fake news-related users. In this article, we propose a framework for recognition of rumour stances (we set four categories –‘agree’, ‘disagree’, ‘neutral’ and ‘query’), combining network topology and comment semantic enhancement (CSE). We first construct a vector matrix of comments via a novel optimised term frequency–inverse document frequency (OTI). To better recognise stances, we employ another vector matrix with novel or special attributes which comprises the network topology of the OSM users derived from the random walk with restart (RWR) method. In addition, we set a weight parameter for each word in the comments to enhance comment semantic representation, where these parameters are tuned based on sentiment score, topology features and question format words. These vector matrices are optimised and combined into an integrated matrix whose transpose matrix is fed into a neural network (NN) for final rumour stance recognition. Experimental evaluations show that our approach achieves a high precision of 93.96% and F1-score of 92.02% which are superior to baselines and other existing methods.

Funder

the Fundamental Research Funds for the Central Universities

China Scholarship Council

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3