Exploring performance of clustering methods on document sentiment analysis

Author:

Ma Baojun1,Yuan Hua2,Wu Ye3

Affiliation:

1. School of Economics and Management, Beijing University of Posts and Telecommunications, China

2. School of Management and Economics, University of Electronic Science and Technology of China, China

3. School of Science, Beijing University of Posts and Telecommunications, China

Abstract

Clustering is a powerful unsupervised tool for sentiment analysis from text. However, the clustering results may be affected by any step of the clustering process, such as data pre-processing strategy, term weighting method in Vector Space Model and clustering algorithm. This paper presents the results of an experimental study of some common clustering techniques with respect to the task of sentiment analysis. Different from previous studies, in particular, we investigate the combination effects of these factors with a series of comprehensive experimental studies. The experimental results indicate that, first, the K-means-type clustering algorithms show clear advantages on balanced review datasets, while performing rather poorly on unbalanced datasets by considering clustering accuracy. Second, the comparatively newly designed weighting models are better than the traditional weighting models for sentiment clustering on both balanced and unbalanced datasets. Furthermore, adjective and adverb words extraction strategy can offer obvious improvements on clustering performance, while strategies of adopting stemming and stopword removal will bring negative influences on sentiment clustering. The experimental results would be valuable for both the study and usage of clustering methods in online review sentiment analysis.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3