Linking and using social media data for enhancing public health analytics

Author:

Ji Xiang1,Chun Soon Ae2,Cappellari Paolo2,Geller James1

Affiliation:

1. Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA

2. Information Systems and Informatics, City University of New York, Staten Island, New York, USA

Abstract

There is a large amount of health information available for any patient to address his/her health concerns. The freely available health datasets include community health data at the national, state, and community level, readily accessible and downloadable. These datasets can help to assess and improve healthcare performance, as well as help to modify health-related policies. There are also patient-generated datasets, accessible through social media, on the conditions, treatments, or side effects that individual patients experience. Clinicians and healthcare providers may benefit from being aware of national health trends and individual healthcare experiences that are relevant to their current patients. The available open health datasets vary from structured to highly unstructured. Due to this variability, an information seeker has to spend time visiting many, possibly irrelevant, Websites, and has to select information from each and integrate it into a coherent mental model. In this paper, we discuss an approach to integrating these openly available health data sources and presenting them to be easily understandable by physicians, healthcare staff, and patients. Through linked data principles and Semantic Web technologies we construct a generic model that integrates diverse open health data sources. The integration model is then used as the basis for developing a set of analytics as part of a system called ‘Social InfoButtons’, providing awareness of both community and patient health issues as well as healthcare trends that may shed light on a specific patient care situation. The prototype system provides patients, public health officials, and healthcare specialists with a unified view of health-related information from both official scientific sources and social networks, and provides the capability of exploring the current data along multiple dimensions, such as time and geographical location.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3