Recognising formula entailment using long short-term memory network

Author:

Pathak Amarnath1ORCID,Pakray Partha2ORCID

Affiliation:

1. Kendriya Vidyalaya Khairagarh, India

2. National Institute of Technology Silchar, India

Abstract

The article presents an approach to recognise formula entailment, which concerns finding entailment relationships between pairs of math formulae. As the current formula-similarity-detection approaches fail to account for broader relationships between pairs of math formulae, recognising formula entailment becomes paramount. To this end, a long short-term memory (LSTM) neural network using symbol-by-symbol attention for recognising formula entailment is implemented. However, owing to the unavailability of relevant training and validation corpora, the first and foremost step is to create a sufficiently large-sized symbol-level MATHENTAIL data set in an automated fashion. Depending on the extent of similarity between the corresponding symbol embeddings, the symbol pairs in the MATHENTAIL data set are assigned ‘entailment’ or ‘neutral’ labels. An improved symbol-to-vector (isymbol2vec) method generates mathematical symbols (in LATEX) and their embeddings using the Wikipedia corpus of scientific documents and Continuous Bag of Words (CBOW) architecture. Eventually, the LSTM network, trained and validated using the MATHENTAIL data set, predicts formulae entailment for test formulae pairs with a reasonable accuracy of 62.2%.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Reference35 articles.

1. Aizawa A, Kohlhase M, Ounis I. NTCIR-10 math pilot task overview. In: Proceedings of the 10th NTCIR conference, Tokyo, Japan, 2013, pp. 654–661, https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/04-NTCIR10-MATH-KohlhaseM_intro.pdf

2. Líška M, Sojka P, Ružicka M. Similarity search for mathematics: Masaryk University team at the NTCIR-10 math task. In: Proceedings of the 10th NTCIR conference on evaluation of information access technologies, Tokyo, Japan, 2013, pp. 686–691, https://is.muni.cz/publication/1112631/en/Similarity-Search-for-Mathematics-Masaryk-University-team-at-the-NTCIR-10-Math-Task/Liska-Sojka-Ruzicka

3. Zanibbi R, Aizawa A, Kohlhase M, et al. NTCIR-12 MathIR task overview. In: Proceedings of the 12th NTCIR conference, Tokyo, Japan, 2016, pp. 299–308, https://www.cs.rit.edu/~rlaz/files/ntcir12-mathir.pdf

4. Ruzicka M, Sojka P, Líska M. Math indexer and searcher under the hood: fine-tuning query expansion and unification strategies. In: Proceedings of the 12th NTCIR conference on evaluation of information access technologies, Tokyo, Japan, 2016, pp. 331–337, https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM_slides.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3