Investigating the reviewer assignment problem: A systematic literature review

Author:

Ribeiro Ana Carolina1ORCID,Sizo Amanda1,Reis Luís Paulo1

Affiliation:

1. Department of Informatics Engineering (DEI), Faculty of Engineering of the University of Porto (FEUP), University of Porto, Portugal; Artificial Intelligence and Computer Science Laboratory (LIACC), University of Porto, Portugal

Abstract

The assignment of appropriate reviewers to academic articles, known as the reviewer assignment problem (RAP), has become a crucial issue in academia. While there has been much research on RAP, there has not yet been a systematic literature review (SLR) examining the various approaches, techniques, algorithms and discoveries related to this topic. To conduct the SLR, we identified and evaluated relevant articles from four databases using defined inclusion and exclusion criteria. We analysed the selected articles and extracted information, and assessed their quality. Our review identified 67 articles on RAP published in conferences and journals up to mid-2022. As one of the main challenges in RAP is acquiring open data, we have studied the data sources used by researchers and found that most studies use real data from conferences, bibliographic databases and online academic search engines. RAP is divided into two main phases: (1) finding/recommending expert reviewers and (2) assigning reviewers to submitted manuscripts. In Phase 1, we have identified that decision support systems, recommendation systems, and machine learning-oriented approaches are more commonly used due to better results. In Phase 2, heuristics and metaheuristics are the approaches that present better results and are consequently more commonly used by researchers. Based on the analysed studies, we have identified potential areas for future research that could lead to improved results. Specifically, we suggest exploring the application of deep neural networks for calculating the degree of correspondence and using the Boolean satisfiability problem to optimise the attribution process.

Funder

Fundação para a Ciência e a Tecnologia

computer science and artificial intelligence laboratory, massachusetts institute of technology

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3