An improved author-topic (AT) model with authorship credit allocation schemes

Author:

Xu Shuo1,Li Ling1,Wang Congcong1,An Xin2,Yang Guancan3

Affiliation:

1. College of Economics and Management, Beijing University of Technology, P.R. China

2. School of Economics and Management, Beijing Forestry University, P.R. China

3. School of Information Resource Management, Renmin University of China, P.R. China

Abstract

Authorship credit allocation schemes have attracted considerable research attention. However, no consensus about which one is the best has been attained until now, and limited evidence from practical tasks has been reported. Therefore, this study uses the author interest discovery task as a real-world task case to provide valuable insights into authorship credit allocation schemes and guidelines for further practical applications. For this purpose, a novel model, ATcredit, is proposed to strengthen the Author-Topic (AT) model with an authorship credit allocation scheme, and collapsed Gibbs sampling is used to approximate the posterior and estimate model parameters. Extensive experiments using the SynBio dataset reveal several interesting findings as follows. (a) Any scheme for allocating unequal authorship credits performs better than its equal-credit counterpart with our ATcredit model in terms of perplexity. (b) The fixed versions of four out of the six schemes work better than their flexible counterparts with our ATcredit model, regardless of the hyper-authorship strategy. (c) The variation coefficient of credit awards can serve as a criterion to decide whether the hyper-authorship strategy should be used. (d) When the number of authors in a scholarly article is less than three, the six authorship credit allocation schemes are similar to each other with our ATcredit model in terms of perplexity. (e) The harmonic counting scheme performs the best, followed by the arithmetic counting scheme, and the network-based counting scheme performs the worst with our ATcredit model in terms of perplexity. (f) The arithmetic counting scheme is similar to the harmonic counting scheme in terms of the normalised mutual information (NMI) of discovered interests, but the geometric counting scheme is different from the axiomatic and network-based counting schemes.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3