Web robot detection based on pattern-matching technique

Author:

Kwon Shinil1,Kim Young-Gab1,Cha Sungdeok1

Affiliation:

1. Korea University, Korea

Abstract

In web robot detection it is important is to find features that are common characteristics of diverse robots, in order to differentiate between them and humans. Existing approaches employ fairly simple features (e.g. empty referrer field, interval between successive requests), which often fail to reflect web robots’ behaviour accurately. False alarms may therefore occur unacceptably often. In this paper we propose a fresh approach that expresses the behaviour of interactive users and various web robots in terms of a sequence of request types, called request patterns. Previous proposals have primarily targeted the detection of text crawlers, but our approach works well on many other web robots, such as image crawlers, email collectors and link checkers. In empirical evaluation of more than 1 billion requests collected at www.microsoft.com , our approach achieved 94% accuracy in web robot detection, estimated by F-measure. A decision tree algorithm proposed by Tan and Kumar was also applied to the same data. A comparison shows that the proposed approach is more accurate, and that real-time detection of web robots is feasible.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3