Affiliation:
1. China Institute of Quality Research, China; Department of Industrial Engineering, Shanghai Jiao Tong University, China
Abstract
The sentiment classification aims to learn sentiment features from the annotated corpus and automatically predict the sentiment polarity of new sentiment text. However, people have different ways of expressing feelings in different domains. Thus, there are important differences in the characteristics of sentimental distribution across different domains. At the same time, in certain specific domains, due to the high cost of corpus collection, there is no annotated corpus available for the classification of sentiment. Therefore, it is necessary to leverage or reuse existing annotated corpus for training. In this article, we proposed a new algorithm for extracting central sentiment sentences in product reviews, and improved the pre-trained language model Bidirectional Encoder Representations from Transformers (BERT) to achieve the domain transfer for cross-domain sentiment classification. We used various pre-training language models to prove the effectiveness of the newly proposed joint algorithm for text-ranking and emotional words extraction, and utilised Amazon product reviews data set to demonstrate the effectiveness of our proposed domain-transfer framework. The experimental results of 12 different cross-domain pairs showed that the new cross-domain classification method was significantly better than several popular cross-domain sentiment classification methods.
Funder
National Natural Science Foundation of China
Subject
Library and Information Sciences,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献