A novel scheme of domain transfer in document-level cross-domain sentiment classification

Author:

Lei Yueting1ORCID,Li Yanting1

Affiliation:

1. China Institute of Quality Research, China; Department of Industrial Engineering, Shanghai Jiao Tong University, China

Abstract

The sentiment classification aims to learn sentiment features from the annotated corpus and automatically predict the sentiment polarity of new sentiment text. However, people have different ways of expressing feelings in different domains. Thus, there are important differences in the characteristics of sentimental distribution across different domains. At the same time, in certain specific domains, due to the high cost of corpus collection, there is no annotated corpus available for the classification of sentiment. Therefore, it is necessary to leverage or reuse existing annotated corpus for training. In this article, we proposed a new algorithm for extracting central sentiment sentences in product reviews, and improved the pre-trained language model Bidirectional Encoder Representations from Transformers (BERT) to achieve the domain transfer for cross-domain sentiment classification. We used various pre-training language models to prove the effectiveness of the newly proposed joint algorithm for text-ranking and emotional words extraction, and utilised Amazon product reviews data set to demonstrate the effectiveness of our proposed domain-transfer framework. The experimental results of 12 different cross-domain pairs showed that the new cross-domain classification method was significantly better than several popular cross-domain sentiment classification methods.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mastering supply chain’s decision-making establishing SDG’s goal: a social media analytics study of the electronic devices in developing and developed countries;Annals of Operations Research;2024-08-01

2. Cross modal human action recognition based on kernel manifold alignment;Proceedings of the 2024 3rd International Conference on Cyber Security, Artificial Intelligence and Digital Economy;2024-03

3. A Cross Language Transfer Learning Algorithm for French Corpus Based on Knowledge Distillation;2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE);2024-02-27

4. Cross-Domain Sentiment Analysis Based on Small in-Domain Fine-Tuning;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3